Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra. | \(-h_{6}-1/2h_{5}+3/2h_{4}+1/2h_{3}+h_{1}\) | \(g_{16}+2/3g_{14}+2/3g_{13}+g_{7}\) | \(g_{15}\) | \(-g_{21}+2/3g_{19}\) | \(-g_{23}+3/2g_{18}\) | \(g_{25}\) | \(g_{28}-3/2g_{24}+g_{22}\) | \(g_{26}\) | \(g_{33}+g_{32}\) | \(g_{34}\) | \(g_{35}\) | \(g_{36}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}+\omega_{2}\) | \(6\omega_{1}+\omega_{2}\) | \(8\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}-6\psi\) | \(2\omega_{1}+\omega_{2}+6\psi\) | \(4\omega_{1}-12\psi\) | \(4\omega_{1}\) | \(4\omega_{1}+12\psi\) | \(6\omega_{1}\) | \(6\omega_{1}+\omega_{2}-6\psi\) | \(6\omega_{1}+\omega_{2}+6\psi\) | \(8\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{2\omega_{1}+\omega_{2}-6\psi} \) → (2, 1, -6) | \(\displaystyle V_{2\omega_{1}+\omega_{2}+6\psi} \) → (2, 1, 6) | \(\displaystyle V_{4\omega_{1}-12\psi} \) → (4, 0, -12) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+12\psi} \) → (4, 0, 12) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | \(\displaystyle V_{6\omega_{1}+\omega_{2}-6\psi} \) → (6, 1, -6) | \(\displaystyle V_{6\omega_{1}+\omega_{2}+6\psi} \) → (6, 1, 6) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}+\omega_{2}\) \(4\omega_{1}+\omega_{2}\) \(6\omega_{1}-\omega_{2}\) \(2\omega_{1}+\omega_{2}\) \(4\omega_{1}-\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-4\omega_{1}+\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) \(-6\omega_{1}+\omega_{2}\) \(-4\omega_{1}-\omega_{2}\) \(-6\omega_{1}-\omega_{2}\) | \(6\omega_{1}+\omega_{2}\) \(4\omega_{1}+\omega_{2}\) \(6\omega_{1}-\omega_{2}\) \(2\omega_{1}+\omega_{2}\) \(4\omega_{1}-\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-4\omega_{1}+\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) \(-6\omega_{1}+\omega_{2}\) \(-4\omega_{1}-\omega_{2}\) \(-6\omega_{1}-\omega_{2}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{1}+\omega_{2}-6\psi\) \(\omega_{2}-6\psi\) \(2\omega_{1}-\omega_{2}-6\psi\) \(-2\omega_{1}+\omega_{2}-6\psi\) \(-\omega_{2}-6\psi\) \(-2\omega_{1}-\omega_{2}-6\psi\) | \(2\omega_{1}+\omega_{2}+6\psi\) \(\omega_{2}+6\psi\) \(2\omega_{1}-\omega_{2}+6\psi\) \(-2\omega_{1}+\omega_{2}+6\psi\) \(-\omega_{2}+6\psi\) \(-2\omega_{1}-\omega_{2}+6\psi\) | \(4\omega_{1}-12\psi\) \(2\omega_{1}-12\psi\) \(-12\psi\) \(-2\omega_{1}-12\psi\) \(-4\omega_{1}-12\psi\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+12\psi\) \(2\omega_{1}+12\psi\) \(12\psi\) \(-2\omega_{1}+12\psi\) \(-4\omega_{1}+12\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(6\omega_{1}+\omega_{2}-6\psi\) \(4\omega_{1}+\omega_{2}-6\psi\) \(6\omega_{1}-\omega_{2}-6\psi\) \(2\omega_{1}+\omega_{2}-6\psi\) \(4\omega_{1}-\omega_{2}-6\psi\) \(\omega_{2}-6\psi\) \(2\omega_{1}-\omega_{2}-6\psi\) \(-2\omega_{1}+\omega_{2}-6\psi\) \(-\omega_{2}-6\psi\) \(-4\omega_{1}+\omega_{2}-6\psi\) \(-2\omega_{1}-\omega_{2}-6\psi\) \(-6\omega_{1}+\omega_{2}-6\psi\) \(-4\omega_{1}-\omega_{2}-6\psi\) \(-6\omega_{1}-\omega_{2}-6\psi\) | \(6\omega_{1}+\omega_{2}+6\psi\) \(4\omega_{1}+\omega_{2}+6\psi\) \(6\omega_{1}-\omega_{2}+6\psi\) \(2\omega_{1}+\omega_{2}+6\psi\) \(4\omega_{1}-\omega_{2}+6\psi\) \(\omega_{2}+6\psi\) \(2\omega_{1}-\omega_{2}+6\psi\) \(-2\omega_{1}+\omega_{2}+6\psi\) \(-\omega_{2}+6\psi\) \(-4\omega_{1}+\omega_{2}+6\psi\) \(-2\omega_{1}-\omega_{2}+6\psi\) \(-6\omega_{1}+\omega_{2}+6\psi\) \(-4\omega_{1}-\omega_{2}+6\psi\) \(-6\omega_{1}-\omega_{2}+6\psi\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}-6\psi}\oplus M_{\omega_{2}-6\psi}\oplus M_{2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}+\omega_{2}-6\psi} \oplus M_{-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}-\omega_{2}-6\psi}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+6\psi}\oplus M_{\omega_{2}+6\psi}\oplus M_{2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}+\omega_{2}+6\psi} \oplus M_{-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}-\omega_{2}+6\psi}\) | \(\displaystyle M_{4\omega_{1}-12\psi}\oplus M_{2\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-2\omega_{1}-12\psi}\oplus M_{-4\omega_{1}-12\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+12\psi}\oplus M_{2\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-2\omega_{1}+12\psi}\oplus M_{-4\omega_{1}+12\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}-6\psi}\oplus M_{4\omega_{1}+\omega_{2}-6\psi}\oplus M_{6\omega_{1}-\omega_{2}-6\psi}\oplus M_{2\omega_{1}+\omega_{2}-6\psi} \oplus M_{4\omega_{1}-\omega_{2}-6\psi}\oplus M_{\omega_{2}-6\psi}\oplus M_{2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}+\omega_{2}-6\psi} \oplus M_{-\omega_{2}-6\psi}\oplus M_{-4\omega_{1}+\omega_{2}-6\psi}\oplus M_{-2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}+\omega_{2}-6\psi} \oplus M_{-4\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}-\omega_{2}-6\psi}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}+6\psi}\oplus M_{4\omega_{1}+\omega_{2}+6\psi}\oplus M_{6\omega_{1}-\omega_{2}+6\psi}\oplus M_{2\omega_{1}+\omega_{2}+6\psi} \oplus M_{4\omega_{1}-\omega_{2}+6\psi}\oplus M_{\omega_{2}+6\psi}\oplus M_{2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}+\omega_{2}+6\psi} \oplus M_{-\omega_{2}+6\psi}\oplus M_{-4\omega_{1}+\omega_{2}+6\psi}\oplus M_{-2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}+\omega_{2}+6\psi} \oplus M_{-4\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}-\omega_{2}+6\psi}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}-6\psi}\oplus M_{\omega_{2}-6\psi}\oplus M_{2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}+\omega_{2}-6\psi} \oplus M_{-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}-\omega_{2}-6\psi}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+6\psi}\oplus M_{\omega_{2}+6\psi}\oplus M_{2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}+\omega_{2}+6\psi} \oplus M_{-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}-\omega_{2}+6\psi}\) | \(\displaystyle M_{4\omega_{1}-12\psi}\oplus M_{2\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-2\omega_{1}-12\psi}\oplus M_{-4\omega_{1}-12\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+12\psi}\oplus M_{2\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-2\omega_{1}+12\psi}\oplus M_{-4\omega_{1}+12\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}-6\psi}\oplus M_{4\omega_{1}+\omega_{2}-6\psi}\oplus M_{6\omega_{1}-\omega_{2}-6\psi}\oplus M_{2\omega_{1}+\omega_{2}-6\psi} \oplus M_{4\omega_{1}-\omega_{2}-6\psi}\oplus M_{\omega_{2}-6\psi}\oplus M_{2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-2\omega_{1}+\omega_{2}-6\psi} \oplus M_{-\omega_{2}-6\psi}\oplus M_{-4\omega_{1}+\omega_{2}-6\psi}\oplus M_{-2\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}+\omega_{2}-6\psi} \oplus M_{-4\omega_{1}-\omega_{2}-6\psi}\oplus M_{-6\omega_{1}-\omega_{2}-6\psi}\) | \(\displaystyle M_{6\omega_{1}+\omega_{2}+6\psi}\oplus M_{4\omega_{1}+\omega_{2}+6\psi}\oplus M_{6\omega_{1}-\omega_{2}+6\psi}\oplus M_{2\omega_{1}+\omega_{2}+6\psi} \oplus M_{4\omega_{1}-\omega_{2}+6\psi}\oplus M_{\omega_{2}+6\psi}\oplus M_{2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-2\omega_{1}+\omega_{2}+6\psi} \oplus M_{-\omega_{2}+6\psi}\oplus M_{-4\omega_{1}+\omega_{2}+6\psi}\oplus M_{-2\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}+\omega_{2}+6\psi} \oplus M_{-4\omega_{1}-\omega_{2}+6\psi}\oplus M_{-6\omega_{1}-\omega_{2}+6\psi}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) |
2 & | 0\\ |
0 & | 2\\ |